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Abstract Microscopic algae and cyanobacteria are

excellent sources of numerous compounds, from raw bio-

mass rich in proteins, oils, and antioxidants to valuable

secondary metabolites with potential medical use. In the

former Czechoslovakia, microalgal biotechnology devel-

oped rapidly in the 1960s with the main aim of providing

industrial, high-yield sources of algal biomass. Unique

cultivation techniques that are still in use were successfully

developed and tested. Gradually, the focus changed from

bulk production to more sophisticated use of microalgae,

including production of bioactive compounds. Along the

way, better understanding of the physiology and cell

biology of productive microalgal strains was achieved.

Currently, microalgae are in the focus again, mostly as

possible sources of bioactive compounds and next-gener-

ation biofuels for the 21st century.
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Abbreviations

DW Dry weight

PSII Photosystem II

Introduction

Microalgae1 represent a diverse group of microorganisms

of tremendous ecological importance, the spread of which

is enormous since they inhabit all major ecosystems—from

cold, Arctic regions, through extremely alkaline or saline

habitats, to hot springs and arid soils. Prokaryotic cyano-

bacteria, in particular, represent the oldest group of pho-

tosynthetic organisms which started the formation of the

Earth’s oxygenic atmosphere more than 2.5 billion years

ago. Microalgae are also responsible for almost half of

global primary biomass production and form the basis of

the food chain in aquatic environments. Furthermore, they

represent one of the most efficient converters of solar

energy to biomass.

Algal biotechnology has been closely related to the use

of macroalgae (e.g., Porphyra), which dates back to the

first millennium. In Asia, these species have been culti-

vated since the Middle Ages, and today this technology

represents an industry with an annual turnover of billions

of US dollars. For example, the first reports about agar

production from Gracilaria date back to the 17th century in

Japan, and brown algae were already processed for iodine

and soda in the 18th century [62].

In nature, water blooms of microalgae can develop in

eutrophic reservoirs where phytoplankton populations are

occasionally mixed by wind or flux. Even under these

optimal situations, biomass concentration is much below

1 g dry matter per liter. Dense, well-mixed mass cultures of

microalgae ([0.5 g biomass per liter) represent artificial
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systems with sufficient nutrition and gas exchange, which

are completely different from optically thin natural phy-

toplankton populations with low biomass density, often

limited by nutrient and carbon supply.

Natural sources of microalgae readily available for

humans are scarce. The cyanobacterium Arthrospira (Spi-

rulina) was collected by the ancient Aztecs in Mexico as a

food additive. In some regions (e.g., Chad in Africa or

Myanmar in Asia) smaller amounts are still harvested from

natural populations in alkaline subtropical lakes. At pres-

ent, the bulk of microalgal biomass—about 8,000 metric

tons used for biotechnological purposes annually—is pro-

duced extensively in cultivation units, where cultures are

exposed to light with sufficient mixing and gas exchange

(autotrophically), or alternatively grown on organic sub-

strates as a source of carbon and energy (mixotrophic or

heterotrophic cultivation).

Numerous cultivation systems have been designed for

growth of microalgae since the 1940s. In general, they are

optimized to suit a certain strain, purpose or product.

Basically, two approaches to mass culturing of microalgae

for the purpose of biomass production exist: the first

applies to cultivation in large-area open reservoirs (ponds

and raceways), while the second represents closed vessels,

i.e., photobioreactors2 or fermentors; for review, see [61,

78]. The first type—open cultivation systems—is repre-

sented by natural or artificial ponds, raceways (ponds akin

to racetracks), and cascades (i.e., inclined-surface systems).

The second type—photobioreactors (closed or semiclosed

systems with natural or artificial illumination)—consist of

glass or transparent plastic tubes, or panels, positioned

horizontally or vertically, arranged as serpentine loops,

flexible coils, manifold rows, or ‘‘fences,’’ in which the

microalgal suspension is continuously circulated [51].

Until recently, most large-scale commercial microalgal

production systems employed open systems. However,

several large-scale closed systems have been built recently

and, for the first time, comparisons of their performance

can be made. There are major operational differences

between open and closed photobioreactors, and conse-

quently the growth physiology of the microalgae is dif-

ferent between the two systems. Several factors governing

growth can, within certain boundaries, be manipulated.

Crucial variables are the optical depth, turbulence, light-

acclimated state of the organism, nutrient availability, and

metabolite accumulation. Each system needs to be opti-

mized for its specific purpose; there is no universal,

all-purpose photobioreactor [26, 63]. The choice of a

suitable cultivation system and the adjustment of the cul-

tivation regime must be worked out for each individual

production strain.

Thousands of microalgal strains have been isolated from

natural habitats and are kept in numerous culture collec-

tions around the world. However, only a few strains,

mostly of aquatic origin, have been cultivated in large-

scale production systems of hundreds to thousands of liters.

A list of strains and their use is shown in Table 1.

Arthrospira (Spirulina) platensis is a planktonic fila-

mentous cyanobacterium composed of individual cells

(about 8 lm in diameter) that grows in subtropical alkaline

lakes with a temperature optimum of about 35�C. In pro-

ductive cultures, Arthrospira is cultivated in shallow mixed

ponds or semiclosed tubular photobioreactors in inorganic

salts with high concentration of bicarbonate, keeping pH

above 9. Its biomass is widely used as a health food and

feed supplement containing proteins, fatty acids, phyco-

biliproteins, carotenoids, polysaccharides, vitamins, and

minerals.

The microalga Chlorella (green algae Chlorophyta) is a

cosmopolitan genus with small globular cells (3–8 lm in

diameter), including strains with a broad range of tem-

perature tolerance between 15�C and 40�C. Chlorella

grows autotrophically in an inorganic medium, as well as

in mixotrophic and heterotrophic conditions (for example,

with addition of acetic acid and glucose). At present,

autotrophic production of Chlorella is carried out in open

ponds, semiclosed tubular photobioreactors, or inclined

cascades, since its fast growth prevents contamination by

other microalgae. Chlorella is the most cultivated eukary-

otic alga, since it is widely used as a health food and feed

supplement, as well as in the pharmaceutical and cosmetics

Table 1 Biotechnological

applications of the most

exploited microalgae

Microalga Status Product and application

Arthrospira (Spirulina) Established Health food, food and feed supplement

Chlorella Established Health food, food and feed supplement

Dunaliella Established b-Carotene

Haematococcus Established Astaxanthin

Nannochloropsis, Isochrysis, Pavlova,

Tetraselmis, Monodus
Established Source of lipids, fatty acids, and

polyunsaturated fatty acids (PUFAs);

aquaculture feed, biofuels

Microalgal biomass in general Rising Biofuels—biodiesel, bio-oil, bioethanol, etc

2 In this article, the term ‘‘photobioreactor’’ is used for closed or

semiclosed systems using natural or artificial illumination.
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industries. It contains proteins, carotenoids, some immu-

nostimulators, polysaccharides, vitamins, and minerals.

The bulk of the microalgal biomass market is represented

by Chlorella and Arthrospira, with annual production of

3,000 and 4,000 t, respectively.

Hypersaline strains of the genus Dunaliella have cells

about 10 lm in diameter. This microalga produces b-car-

otene in large amounts, and it is a natural source of

carotenoids for some shrimps. The high content of b-car-

otene makes Dunaliella attractive to biotechnologists for

large-scale production in shallow, open ponds under high

solar radiation.

Haematococcus pluvialis (Chlorophyta) is a freshwater,

unicellular alga with a rather complex lifecycle. A two-

stage process is employed for biomass production. Under

stress conditions (nutrient deficiency, salinity, high tem-

peratures in combination with high irradiance), it produces

an orange–red pigment, astaxanthin, the important natural

colorant for salmonid fish, shrimp, lobster, and crayfish and

for the health food market.

Initial period of microalgal mass culture

Mass cultivation of microalgae was pioneered by the

Carnegie Institution in the 1940s, and particular attention

was paid to the unicellular green microalga Chlorella

pyrenoidosa (Chlorophyta) because of the broad range of

environmental conditions under which it can grow, and

also because this organism was then extensively used as a

model organism for basic photosynthetic research (see

pioneering works by Bessel Kok, Melvin Calvin, Robert

Emerson, and others). The main aim was to obtain high-

protein biomass and to study its possible uses. During

World War II, the experience gained in the cultivation of

Chlorella was applied, namely in the search for an anti-

bacterial substance that might be isolated from the culture

of Chlorella [1]. In 1947–1948, the possibility of growing

Chlorella on a large scale for food was seriously consid-

ered [10]. The primary cultivation studies of several

research groups were summarized in the ‘‘bible’’ of early

algal biotechnology, edited by John S. Burlew of the

Carnegie Institution in Washington, DC [9]. The first

attempts at large-scale microalgal cultivation and design of

early pilot plants focused on closed systems in order to

isolate cultures from the natural environment. This was a

logical consequence of the requirement for controlled

growth conditions and to prevent contamination of cultures

by other microorganisms. One of the first productive pilot

plants for mass cultivation of Chlorella was devised and

tested at Arthur D. Little, Inc. in Cambridge, MA in col-

laboration with the Carnegie Institution in 1951 [3]. The

cultivation unit (*4,000 l) was constructed from thin-

walled plastic tube to form a flat channel of 7–8 cm depth

with continuous circulation of the culture by a pump and

supply of CO2 to promote growth. The highest biomass

concentration achieved was 1.5 g DW l-1. In Israel, a

small-scale pilot plant to produce biomass of Chlorella or

Scenedesmus as green fodder for cattle was set up as a

closed, mixed reservoir of 120 l mounted in a greenhouse

and taking advantage of climatic conditions with year-

round sunlight availability [23]. In Germany, Gummert and

coworkers experimented with large-scale cultures of

Chlorella grown in deep shallow concrete trenches (res-

ervoirs) with plastic lining [27]. These experiments were

aimed at evaluating the possibility of utilizing carbon

dioxide from waste gases in the industrial district of the

Ruhr. The cultures were bubbled with a mixture of air and

1% commercial or ‘‘waste’’ CO2, which was sufficient to

supply carbon and maintain growth as well as to mix the

cultures turbulently.

In Japan, at the Tokugawa Institute of Biological

Research, an early attempt was made to design a relatively

well-controlled outdoor closed system: a tubular photobi-

oreactor to study the growth kinetics of Chlorella [75]. The

40-l system consisted of a horizontal loop of glass tubes

(diameter 3 cm, length 33 m) and was submerged in a

water bath to prevent overheating. The culture was circu-

lated by a pump and aerated by CO2-enriched air, and the

produced oxygen was released in a gas exchange tower.

The Chlorella culture was grown in batch or semibatch

regimes with daily harvest of biomass. In the same labo-

ratory, a ‘‘partially enclosed atmosphere system’’ was

constructed using shallow troughs covered with plastic

sheets [55]. The advantage of this system was its relatively

small depth (2–15 cm) with high linear velocity of

suspension flow (6–45 cm s-1), which guaranteed high

turbulence of the culture. From the point of view of

hydraulics, this system did not differ from the open sys-

tems, since the microalgal culture absorbed sunlight and

exchanged gases with the atmosphere through its surface.

In addition, the cultures were supplemented by overhead

artificial illumination. Soon after, the technology of Chlo-

rella cultivation for food and feed was worked out in more

detail [74].

Microalgal biotechnology in Czechoslovakia

By the mid 1950s it was proven that open outdoor cultures

were feasible and that they would probably not suffer from

contamination more than any large-scale closed culture

system if fast-growing strains (e.g., Chlorella or Scene-

desmus) were cultivated. This is understandable if one

realizes that it is practically impossible to keep large

installations under sterile conditions. Once the feasibility of

open cultures was confirmed, the concept of outdoor mic-

roalgal culture was substantiated. This is without doubt due
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to the much simpler design and inexpensive construction of

open-type units as compared with closed systems.

With this in mind, the first experimental outdoor units

for cultivation of microalgae in the former Czechoslovakia

were built at the Botanical Garden of the Slovak Academy

of Sciences in the town of Košice at the end of the 1950s.

The research group there was headed by plant physiologist

Ivan Šetlı́k (Fig. 1) with interest in factors limiting plant

productivity. Initially, the study of microalgae was only a

minor research topic, but soon the potentially high pro-

ductivity of photosynthetic microorganisms was realized

and became the main focus of laboratory research [5, 6,

72]. In 1958, the short popular-science movie Solar Lab-

oratory was filmed at the Košice Botanical Garden. The

film producer, Miro Bernat, liked the idea that microalgal

cultivation units would be ‘‘fields for the third millennium’’

and financed construction of the first larger microalgal pilot

units (Fig. 2). These ‘‘movie’’ units demonstrated well the

potential for outdoor photosynthetic production of micro-

algal biomass in Central European climate conditions. The

first cultivation units were based on the principle of the

descending flow surface, constructed as shallow troughs of

reinforced polyester resin, arranged stepwise one below

another to form a cascade of hydraulic jumps (Fig. 3,

originally in [73]). A few months later, these units also

caught the attention of Professor Ivan Málek, then director

of the Institute of Biology in Prague, who visited Košice.

He recognized the potential role of mass microalgal culti-

vation in the broader aim of managing continuous culti-

vation of industrial microorganisms and providing

alternative sources of protein. With his assistance, the

Algological Laboratory of the Institute of Biology was

established in January 1960 in Třeboň, a small town in

South Bohemia. Here Ivan Šetlı́k and his collaborators

enjoyed ample support and soon, working with enormous

enthusiasm, they developed a number of indoor and out-

door test production units as well as cultivation procedures

(Fig. 4). Both Ivan Málek and Ivan Šetlı́k (Fig. 5) played

decisive roles in the formation and establishment of algal

biotechnology in the former Czechoslovakia: throughout

his whole career, Ivan Šetlı́k (1928–2009) was a visionary

who set research directions not only in algal biotechnology

but in photosynthesis in general, while Ivan Málek

(1909–1994) in the 1960s provided the necessary back-

ing—infrastructure, support, and international promotion.

The new research group in Třeboň was formed on the

principle of a complex processes approach to study mic-

roalgal productivity; research interests included mathe-

matical modeling of turbulent flow, instrumentation

development, biotechnology, physiology, cell biology,

algal genetics, and ecophysiology. Soon after, the micro-

algal biotechnology research was moved to a new labora-

tory campus ‘‘Opatovický mlýn,’’ reconstructed from the

former watermill built in 1708 by Augustinian priests.

There, research was aimed at defining the scientific basis

for commercial exploitation of microalgae cultivated on a

Fig. 1 Dr. Ivan Šetlı́k (1928–2009), pioneer and leading figure of

algal biotechnology and photosynthesis research in the former

Czechoslovakia

Fig. 2 Pilot algal outdoor cultivation units constructed in 1958 at the

Botanical Garden in Košice (Slovakia)

Fig. 3 Schematic diagram of cascade cultivation unit of 12 m2. The

cultivation surface was set up as shallow troughs made of reinforced

polyester resin and arranged stepwise (1960)
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large scale. In 1962–1963, unique outdoor pilot plants of

50 and 900 m2 were constructed [73]. The original highly

productive units were based on cascades of sloping planes,

known worldwide as Třeboň-type cascade units (Fig. 6).

The principle of microalgal cultivation was to maintain

turbulent flow of a relatively thin layer using corrugated

surfaces or a plain surface fitted with baffles. The pilot

plant was constructed as dual-purpose units that were used

during the winter as a glasshouse for hydroponic vegetable

and flower cultivation and in summer for microalgal bio-

mass production.

Compared with reservoirs (open ponds, raceways), with

suspension depth of 20–30 cm where dilute cultures of

microalgae (0.5-1 g DW l-1) were grown under limited

mixing and gas exchange, the main advantage of the cas-

cade system constructed in Třeboň was the growth of a

well-mixed thick (10–15 g DW l-1) microalgal suspension

in a relatively thin layer (1–5 cm). This guarantees high

average irradiance per cell and good gas exchange to obtain

higher productivity per illuminated surface. Thus, a much

lower volume of dense microalgal suspension can be

treated at harvest. The units had a plane glass surface, with

a slope of 3%, supported by a steel structure. The surface

was fitted with transverse baffles 3.5 cm high and 15 cm

apart to create intensive turbulence in the microalgal sus-

pension, which moved down the surface at a velocity of

7 cm s-1. The culture was circulated over the surface by an

axial-flow pump during the day and was kept in a retention

tank at night to reduce heat losses, or during rainfall to

avoid dilution by rainwater. The detailed setup of these

unique cultivation experiments was described in a newly

established journal, Algological Studies, which was initi-

ated by Prof. Málek and published in Třeboň [47, 71]. In

outdoor cultivation experiments as well as in most labo-

ratory studies, the green microalga Scenedesmus quadric-

auda with large coenobia which settle easily, and later

Chlorella pyrenoidosa with small, globular cells (2–8 lm

in diameter), were used. In the 1960s, the efforts of the

laboratory were focused mostly on the technical problems

of microalgae mass culture.

Later, in the 1960s and 1970s, cascade thin-layer culti-

vation units of Třeboň type were also constructed in

Poland, Cuba, Bulgaria, and Italy to compare cultivation

under various climatic conditions [71, 79, 87]. Collabora-

tion was also established with the biotechnology group of

the Istituto di Microbiologia Agraria, Universita di Firenze,

which worked with mass microalgae cultures [24, 25].

A project for a large algal production plant and research

institute was elaborated in the late 1960s. The plant was to

be situated on the opposite side of the Opatovický pond. The

proposed layout combined a research and development

(R&D) center with biomass production, to create optimal

conditions for fast and flexible solution of all problems

which are to be expected during the scale-up process [71].

Fig. 4 Test outdoor cultivation units operating in Třeboň (early

1960s)

Fig. 5 Ivan Šetlı́k (left) and Ivan Málek (right) celebrating the first

successful cultivation of microalgae in Třeboň (early 1960s)

Fig. 6 Semiproduction outdoor algal production units located in the

campus of the Opatovický mlýn (mid 1960s)
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However, the plant and the institute never materialized, and

even the existing pilot units were dismantled after only a few

years of operation. Following the initial enthusiasm, a cer-

tain stagnation in algal research followed, and skepticism

about the economical potential of algal mass production

took over. In fact, several pilot plants that started operation

in the 1960s and 1970s failed to confirm the hopeful pros-

pects derived from the earlier laboratory work of the pre-

vious decades. Most of the large-scale tests were abandoned

after a few months of operation with the conclusion that, for

the time being, large-scale culture could not be economi-

cally feasible. The curious thing about this situation is that in

no case was a reasonable explanation given for the diver-

gence between the conclusions drawn from basic research

and the results obtained with pilot-plant equipment. The

only explanation which seemed reasonable was imperfec-

tions of the technical equipment and technology; in fact, as

was often stated, the conditions obtained for growth of

microalgae were rather distant from the optimal ones [73].

However, the main reason for dismantling the pilot

production plant in Třeboň was that, after the political

turmoil in 1968, Professor Málek was removed from office

as a ‘‘revisionist,’’ and every activity, even scientific, that

he had supported was intentionally suppressed. Partial

resurrection of microalgal biotechnology in Třeboň came

only at the end of the 1970s, owing to the role of Ivan

Šetlı́k and his collaborators in the space program ‘‘Inter-

cosmos,’’ in which they prepared experiments for a Czech

astronaut on board the Salyut 6 spacecraft that orbited in

1978. The novel experiments were successful and proved

that unicellular Chlorella can grow and divide under

microgravity conditions of space shuttles [36].

Microalgal photosynthesis and biotechnology after 1989

After the return of democracy in 1989 any direct political

influence on Czech science was removed. In the two dec-

ades which followed, enormous development in the field of

algal biotechnology occurred. In September 1993, the 6th

International Conference on Applied Algology was held at

Třeboň [2]. It opened new topics and renewed collabora-

tions broken at the end of the 1960s. At this time, a great

renaissance of microalgal biotechnology also occurred

worldwide. New applications were discussed and new

approaches were designed.

Before the turn of the millennium

In the 1980s, it was proven experimentally that cascades

(inclined baffled surface with about 3 cm culture layer) cir-

culated by a pump could achieve significantly higher pro-

ductivity (24.8 g DW m-2 day-1) than horizontal raceways

circulated by paddlewheels with a culture layer twice as deep

(17.2 g DW m-2 day-1) when working with the green

microalga Scenedesmus obliquus [4]. Due to the different

culture concentration, areal densities in terms of algal

biomass per unit surface were equivalent, but the greater

turbulence and better temperature regime of the cascades led

to their higher productivity as compared with the raceways.

At the beginning of the 1990s, a third generation of out-

door cascade units for microalgal cultivation was built in

Třeboň. Compared with the cascades used in the 1960s, the

microalgal suspension in the new cascade units was much

thinner—only about 10 mm thick. Instead of densely spaced

baffles as described previously [71], plastic rods of 13 mm

diameter were placed 1.5 meters apart, and thus the flow

velocity could be increased to 0.5 m s-1 [17, 18]. Later, it

was realized that the inclined-surface system works best if

operated as a smooth inclined surface without any baffles

where the layer of microalgae is only about 6 mm [44]. This

allows achievement of high growth rate up to biomass

concentration of 40–50 g DW l-1. Also, cleaning and main-

tenance were much simpler compared with the baffled

system. A 50 m2 pilot system was tested in the Mediterranean

climate where summer productivities were as high as

32 g DW m-2 day-1, as compared with Central Europe with

productivity maximum of about 23 g DW m-2 day-1 [16].

Important issues relating to construction design, variation

of cultivation regimes, and biomass productivity studies

were addressed by measurements of pCO2 and pO2 profiles

in outdoor cascade units carried out by Karel Lı́vanský and

co-workers [38, 45]. In some experiments, natural gas from

an underground source was used for cultivation [44, 45].

These measurements provided detailed results on CO2/O2

exchange to optimize the supply of CO2 for microalgal mass

cultures and its utilization in thin-layer open units with long

cultivation tracks [37, 39–41, 43]. About 64% of supplied

CO2 was utilized by the microalgal culture, the rest being

lost as a result of incomplete absorption in the process of

saturation or escape from the suspension into the atmo-

sphere. About 2.73 kg CO2 was needed for production of

1 kg Chlorella biomass. Per 1 g evolved O2, 1.12 g CO2

was consumed by the microalgae [42].

Based on fundamental research into the structure and

function of photosynthetic membranes carried out at the

Laboratory of Photosynthesis in Třeboň in the 1980s and

1990s [56, 57], microalgal biotechnology moved from a semi-

empirical to molecular level. New methodology of photo-

biophysical and biochemical measurements was employed.

Laboratory cultures of cyanobacteria and microalgae were

examined to define the role of photosystem II (PSII) complex

in response to environmental stresses [30, 32, 33].

Since the early attempts in the 1930s, it has been clear

that intermittent (pulsed) light is the most important factor

for microalgae growth. The amount of photon energy
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received by each cell is a combination of several factors:

irradiance intensity, cell population density, length of

optical path (thickness of culture layer), spectral quality,

light absorption, and rate of mixing [63]. Turbulent regime

in mass microalgal cultures is essential, since light/dark

cycles determine culture productivity. Short pulses of high

light intensity can be used with high efficiency if separated

by sufficiently long dark periods [22]. Maximal quantum

yields were found for light/dark ratios of about 1:10 [31].

In pulsed (intermittent) light regimes, a microalgal culture

can utilize a larger fraction of the sunlight reaching a given

area. In the 1990s, the introduction of high-intensity light-

emitting diodes (LEDs) for scientific use made it possible

to measure the effect of intermittent illumination more

preciously in the microsecond range. It was proved that

photosynthetic rates could be further enhanced if the fre-

quency of intense light pulses was increased from units to

thousands of Hz [26, 54, 58]. Lately, a hydrodynamic

model of culture in thin-layer cascade units has demon-

strated highly turbulent flow allowing rapid light/dark

cycles (with frequency of 0.5 s-1) [51].

Following the application of chlorophyll (chl) variable

fluorescence measurements in field crops with the aim of

correlating changes of photobiochemical activities with

productivity (e.g., [13]), chl fluorescence was applied to

monitor microalgal mass cultures in situ. This novel

approach was qualitatively different from previously used

physiological methods, and the photosynthetic and bio-

technology groups from Třeboň played a substantial role in

its development. The pilot experiments, carried out in cas-

cades and closed photobioreactor systems in the Czech

Republic, Italy, and Israel, mostly applied the method of chl

fluorescence quenching to examine effects of environmental

stresses—high irradiance, temperature extremes, high dis-

solved oxygen concentration, and their synergism on algal

productivity [76, 81]. Online chl fluorescence measure-

ments indicated that changes of daily integrated values of

relative PSII electron transport could be correlated well with

analogous changes in daily productivity of cultures grown

under different conditions [52, 53, 77]. The relative electron

transport rate proved to be a simple and reliable parameter

for use in estimating the photosynthetic performance of

outdoor cultures of microalgae. Thus, in situ chl fluores-

cence monitoring has proven to be a suitable technique for

measuring photochemical performance, being fast, nonin-

vasive, and easy to measure. However, although the theory

is well described at present [66, 70, 82, 83], the interpreta-

tion of fluorescence signals may not be straightforward,

particularly when dealing with microalgae [11, 67, 69].

Experiments in closed photobioreactors as well as open

cascade units showed that a midday depression of PSII

photochemical yields of 20–30% of maximal morning values

is essential for well-performing cultures [49–51, 63]. Lower

or higher depression of photochemical yields indicates low-

light-acclimated or photoinhibited cultures, respectively.

These results are important from a biotechnological point of

view in order to optimize the growth of outdoor microalgal

mass cultures under varying climatic conditions.

The so-called xanthophyll cycle (light-dependent con-

version of violaxanthin to zeaxanthin), was shown to serve as

a major, short-term light-acclimation mechanism in higher

plants. The role of xanthophylls in thermal dissipation of

surplus excitation energy was deduced from the linear

relationship between zeaxanthin formation and the magni-

tude of nonphotochemical fluorescence quenching. Unlike

in higher plants, the role of the xanthophyll cycle in green

microalgae (Chlorophyta) is ambiguous, since its contribu-

tion to energy dissipation can vary significantly among

species [48, 52]. It was found that the xanthophyll cycle

operates in all tested strains (e.g., Chlorella, Scenedesmus,

Haematococcus, Chlorococcum, Spongiochloris); however,

its contribution to nonphotochemical quenching was not as

significant as in higher plants. It seems that microalgae rely

on this dissipative mechanism only at low biomass density.

Another new line of research was focused on microalgal

secondary metabolites. The search was for potential pro-

ducers of secondary carotenoids, extracellular polysaccha-

rides, mycosporine-like amino acids, and polyunsaturated

fatty acids. Beside isolation and characterization of these

compounds, research also aimed to optimize parameters

important for the design and construction of suitable labo-

ratory photobioreactors that would be suitable for overpro-

duction of these bioactive compounds on the scale of

hundreds of liters [29, 34, 35, 65, 86].

Because phototrophic microalgae can be cultivated

under strictly controlled conditions, they are the ideal

choice to incorporate stable isotopes from inorganic C, H,

and N sources. Various biochemicals labeled by stable

isotopes are used for scientific purposes (molecular struc-

ture or physiological investigations), as well as for clinical

purposes (gastrointestinal or breath diagnosis tests) [15].

Microalgal biotechnology in the third millennium:

future prospects

Since 2000, close collaboration with the Academic and

University Center in Nové Hrady resulted in the construction

of a brand new type of closed tubular photobioreactor which

was based on solar concentrators (linear Fresnel lenses)

mounted in a climate-controlled greenhouse on top of the

laboratory complex, combining features of indoor and out-

door cultivation units [49, 50]. The dual-purpose system was

designed for algal biomass production in temperate climate

zone under well-controlled cultivation conditions and with

surplus solar energy being used for heating service water. It

was used to study the strategy of microalgal acclimation to

J Ind Microbiol Biotechnol (2010) 37:1307–1317 1313

123



supra-high solar irradiance, with values as much as 3.5 times

the ambient value. In model cultivations, cultures of the

cyanobacterium Arthrospira (Spirulina) were cultivated at

about three times higher solar irradiances (as high as 6 mmol

photon m-2 s-1) than those usually recorded outdoors in

summer, indicating that this organism is tolerant to pho-

toinhibition under sufficient turbulence and biomass density.

A two-stage cultivation process of the green microalga

Haematococcus pluvialis was investigated with respect to

correlations between photochemical activities and asta-

xanthin production. First, the culture was grown in low-

irradiance units, and then exposed to supra-high irradiance

when the rate of astaxanthin production was 30–50%

higher than in the culture exposed to ambient irradiance.

Carotenoid-rich microalgae biomass can be used as a col-

orant, for example, in ornamental fish aquaculture [88].

The light captured by photosynthetic pigments is roughly

ten times higher under full sunlight (2,000 lmol photon

m-2 s-1) than that required to saturate growth. In other

words, as much as 90% of the photons captured by chl

antennae are dissipated as heat and fluorescence. Uncritical

acceptance of photosynthetic efficiencies of about 10% or

even higher [60] inevitably leads to exaggerated estimates

of present and future biomass productivity. We can estimate

a more realistic figure for maximum photosynthetic effi-

ciency (photon energy converted into biomass energy) of

about 4.5% for C3 plants or microalgae by using educated

guesswork and detailed consideration of the partial reac-

tions involved (e.g., [7, 8, 84, 91]).

A new type of microalgal bioreactor with precise control

of process parameters (temperature, irradiance, gas com-

position) and online measurement of photosynthetic per-

formance based on chl fluorescence was designed [12] and

are now produced commercially (www.psi.cz). In parallel

with the design of the new generation of photobioreactors,

the study of bioactive compounds in microalgal cultures

with potential as pharmacological drug leads has been

initiated. The natural product chemistry is extraordinarily

diverse, reflecting the exceptional biosynthetic capacities

of microalgae. The molecular targets relevant for drug

discovery have been generated by nature for millennia, but

the technical knowhow to isolate and characterize bioactive

compounds has only been available recently [68]. Micro-

algae represent a large, unexplored source of a variety of

chemical structures. Routine methods for evaluation of

biological activity in extracts from microalgal biomass as

well as culture media have been applied. Lately, new test

systems to identify drug candidates were applied for cell-

based primary screening of several hundred microalgae

strains for antibacterial, antioxidant, fungicidal, allelo-

pathic, antitumoral, wound-healing, and anti-inflammatory

compounds as well as enzyme (proteases, acetylcholine

esterase) activity inhibitors [21, 28, 46, 59, 80, 85, 89, 90].

Particularly, the search for novel anti-inflammatory

substances, able to downregulate increased endothelial

chemokine production and adhesion molecule expression as

well as tissue damage, holds therapeutic promise [46]. In

close collaboration with Austrian partners (IMC Krems),

two cell lines were used for detection of anti-inflammatory

and wound-healing metabolites from microalgae [85]. The

use of new in vitro assays resulted in detection of several

compounds with unique structures and potential as novel

therapeutics. The search for new acetylcholine esterase

inhibitors was successful using primary screening of more

than 200 microalgal strains from different habitats during

this period of time [89]. Compounds isolated from the

cyanobacterium Nostoc spp. were structurally characterized

[14, 90]. In the field of antioxidant activity a new rapid-

resolution separation method was developed [59]. The

method was optimized for determination and identification

of antioxidants (phenolic compounds and isoflavones) in

fmol quantities and submicroliter sample volumes; for

example, p-hydroxybenzoic, protocatechic, vanillic, syrin-

gic, caffeic, and chlorogenic acids, 4-hydroxybenzaldehyde,

and 3,4-dihydroxybenzaldehyde were identified in extracts

from microalgae strains (i.e., Spirulina platensis, Anabaena

doliolum, Nostoc spp., and Cylindrospermum spp.) which

contain phenolic acids or aldehydes at ppt levels.

Another promising field in current microalgae research

is the quest for biofuels. As the rate of fossil-fuel con-

sumption increases to unsustainable levels and accumula-

tion of greenhouse gases in the environment quickly

approaches ‘‘dangerously high’’ concentrations, a new

bonanza for microalgal biotechnology has started with the

goal of economical biofuel production from microalgae. A

brief overview of second-generation biodiesel production

systems using microalgae has been compiled [64]. To

achieve environmental and economic sustainability, fuel

production processes are required that are not only

renewable but also capable of sequestering atmospheric

CO2. Biodiesel is currently produced from oil synthesized

from conventional fuel crops that harvest the Sun’s energy

and store it as chemical energy. This presents a route for

renewable and carbon-neutral fuel production. However,

increasing biofuel production on arable land could have

severe consequences for global food supply. Second-gen-

eration biofuels (biodiesel, bioethanol, and biomethane)

produced from microalgae, plant, and forest plantations on

vast land areas will have the advantage that they do not

compete with food crops. However, current supplies from

oil crops and animal fats account for only approximately

0.3% of current demand for transport fuels. In contrast to

fuel crops, producing biodiesel from algae is widely

regarded as one of the most efficient ways of generating

biofuels and also appears to represent the only current

renewable source of oil that could meet global demand for
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transport fuels. The main advantages of second-generation

microalgal systems are that they: (1) have a high photon

conversion efficiency (as evidenced by increased biomass

yields per hectare), (2) can be harvested batch-wise nearly

all year round, providing a reliable and continuous supply

of oil, (3) can utilize salt and waste water, thereby greatly

reducing freshwater use, (4) can couple CO2-neutral fuel

production with CO2 sequestration, and (5) can produce

nontoxic and highly biodegradable biofuels. Current limi-

tations exist mainly in the harvesting process and in the

supply of CO2 for high-efficiency production. Preliminary

studies were carried out on utilization of CO2 from flue

gasses for cultivation of microalgae in outdoor open thin-

layer units [19] or in closed cultivation systems [20]. A

scheme for a combined process of farm unit size was

proposed; this includes anaerobic digestion of organic

agricultural waste, production and combustion of biogas,

and utilization of flue gas for production of microalgal

biomass, which could be used in animal feed.

Throughout the last 50 years, microalgal biotechnology

has undergone enormous development. In the former

Czechoslovakia, the foundations of microalgal biotech-

nology were laid in the 1960s by a group of enthusiasts that

included Prof. Ivan Málek. Despite the fact that research

and practice of microalgal biotechnology had to pass

through difficult and critical periods, the foundations

proved to be solid. Today, several original questions

remain unanswered and many visions still need to be ful-

filled. Despite the fact that research and biotechnological

priorities have changed, in that microalgae are not con-

sidered primarily as the source of proteins or vitamins, but

rather of carbon storage products to generate clean energy,

the major underlying questions of microalgal biotechnol-

ogy are still ‘‘hot’’ and open for further research: What is

the maximal possible microalgal productivity, and how can

it be achieved on a large scale and in an economic way?

Can microalgal cultures accumulate high content of carbon

storage products and still grow rapidly? Let us hope that

modern approaches will provide positive answers.
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rescence quenching caused by inorganic carbon depletion in the

green alga Scenedesmus quadricauda. Photosynthetica 28:

541–547

31. Kok B (1953) Experiments on photosynthesis by Chlorella in

flashing light. In: Burlew JS (ed) Algal culture: from laboratory to

pilot plant. Kirby Lithographic, Washington, DC, pp 63–75

32. Komenda J, Masojı́dek J, Boček J, Prášil O (1993) Reversible and

irreversible changes of fluorescence parameters during photoin-

hibition in the Synechococcus elongatus cells. Photosynthetica

28:249–251

33. Komenda J, Masojı́dek J, Prášil O, Boček J (1992) Two mecha-

nisms of photosystem 2 photoinactivation—do they exist in vivo?

Photosynthetica 27:99–108
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